《找次品》教学反思15篇

更新时间:2023-12-30 21:23:33
《找次品》教学反思15篇

作为一位到岗不久的教师,我们要有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,那么优秀的教学反思是什么样的呢?以下是小编收集整理的《找次品》教学反思,仅供参考,希望能够帮助到大家。

《找次品》教学反思1

一、教材简析:

“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。

二、设计思路:

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。一方面注意让学生进行合作学习,小组交流,经历找次品的过程;另一方面注意引导学生体会解决问题策略的多样性。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。

三、教后感想:

(一) 情景的创设

通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。

(二)难点转化, 降低教学起点

按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3盒木糖醇中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。

(三)层层推进,符合小学生的认知规律

本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。

(四)、知识拓展 ,巩固提高

当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在备课时我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。

(五)运用多种教学方法,提高效率

在教学过程中,充分的运用了研究性学习的教学 方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。

《找次品》教学反思2

“找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。

我首先安排了从3个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了从12个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。

在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。在教学过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。围绕问题的解决,让学生经历探索数学 学习的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受最优策略的方法,提高学生解决问题的能力。

本节课中我认为还有以下方面没有做好:首先是在教学过程中有一个学生还要说不同的方法,我没有给他机会,没照顾到个体差异;再者从5个待测物品中找较轻的一个中,有一学生举出了分成“2和3”的方法,面对这一生成性的资源我没有很好地把握住机会对学生进行平均分这一概念的渗透;最后是在对从9个物品中找一个较轻的比较归纳中,总结比较仓促,使得学困生在这方面的理解上还有些困难。这些都需要努力改进和提高。

《找次品》教学反思3

《找次品》这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,脑中一片空白,学生该如何学?我该怎样教?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。

在教学过程中,我首先让孩子们明白三点:第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。第三:次品就是大小、形状、颜色完全相同,但质量稍重或稍轻的物品。理解了这三点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?接着学习4、5、6…个,让 ……此处隐藏10120个字……理能力。

三、基本活动经验的认识

对学生而言,所谓数学的基本活动经验是指:围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。基本活动经验是学生的亲身经历。让学生获得基本活动经验,本质上让学生经历数学活动直观,但必须建立在学生亲身经历和感知的基础之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及讨论的时间偏少,但我和学生的心情一样愉快,因为学生有了探索的欲望和一定的解决问题的能力,这也是我最大的收获。

四、存在的不足

这节课也存在不足,由于是40分钟课,组织学生动手操作与合作交流不够充分:如果是60分钟课,在独立探究和小组验证活动中我会增加2—3分钟以便学生充分感知寻找最优策略的必要性;并且在独立研究后我会用4—6分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境界,达到促进学生自主学习的根本目标。

总之,这次活动给我了一次很好的锻炼、成长的机会,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路!

《找次品》教学反思14

本周四我与孩子们学习了《找次品》,《找次品》是五年级下册数学广角里的教学内容,我认为这是一节生活思维训练课。

问题导入——切近生活

“商品店有86个玩具,但是有一个是次品,而且这个次品较轻”。抛出这个问题,有的学生问什么是次品?大家根据自己的生活经验畅所欲言:轻重不达标,光滑度不达标,含量不达标等等,孩子们的思维一下打开了。今天研究的玩具中的次品属于那一类?轻重不达标。(板书:找次品,轻重)

“轻重不达标,用什么工具能找出来?”学生想到两种工具:天平和秤。“大家说说你会用什么工具来找这个次品?理由是什么?”最后大家一致认为用天平节约时间,因为天平就有两种情况:平衡和不平衡。(板书:天平,平衡不平衡)

有了生活经验做铺垫,学生学习起来思维活跃。

探究新知——退而求之

“86个玩具太多,研究起来困难,怎么办?”“从小数开始研究!”对!正如华罗庚爷爷所说:善于退,足够地退,退到起始,而不失去重要地步,是学好数学的决窍。即对于表面上难以解决的问题,需要我们退步考虑,研究特殊现象,再运用分析、归纳、迁移、演绎等手法去概括一般规律,使问题获解。

我们从2个开始研究,又研究了3个。到第4个时,孩子的方法就不一样了:先分成(2,2)和(1,1,2)来秤,都是至少两次就保证找出轻的次品。5,6,7都跟4一种情况,孩子们方法还是集中在分成两份或者三份,但至少的次数是一样的。

8个,同学们的方法就多了。小组讨论集体辩论,发现开始分成三份(3,3,2)用的次数少,就能保证找出次品。

“三份怎么分?”这里联想到抽屉原理中的“尽可能平均分”,因为最多的份与最少的份相差1。

“为什么分成三份,保证找到次品的次数最少呢?”同学们又进行了深度思考。第一次,尽可能的平均分成两份,确定次品的范围为总数的二分之一;分成三份,确定次品的范围为总数的三分之一;那分成四份是不是就是确定次品的范围为总数的四分之一,以此类推呢?

孩子们又以小组为单位,展开了深度思考。两份,三份,就能一次保证判断出次品在哪一份中。而分成四份,一次不能保证找出次品在哪一份中?需要两次才能确定次品在哪里?也就是两次才确定次品在总数的四分之一,那么比分成三份,一次确定次品的范围为总数的三分之一小。由此得出结论:尽可能平均分三份,是为了缩小次品的范围,而且是最小的,这样找次品用的次数就少。

拓展提升——总结规律

学生自主找9-28个物品中的次品,引导学生发现规律。前提:有一个次品轻或者重。保证找到次品的最少次数,规律:1-3个秤一次,4-9个秤二次,10-27个秤三次,以此类推。

本节课,大部分学生的思维产生跳跃,体验找次品策略不断优化的过程,思维也达到了一定的高度,培养学生良好的数学思维能力。让学生能系统而有步骤地感受到数学思想方法,并把重要的数学思想方法转化为学生可以理解的简单形式。

《找次品》教学反思15

从选课到试教,再从教学到收获,这其中波折不断,但我依然收获着它馈赠给我的那些独特的感悟。

1、体验那些深邃的理念

通过这次磨课,让我对弗赖登塔尔强调“数学是一种活动”的教育教学理论有了一定的感悟。在初始教案设计阶段,本节课以“找次品”这一操作活动为载体,重在从具体的操作到抽象的概括,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳得出找其中1瓶次品的规律,重在结果的呈现。而后期教案设计则围绕着2个数学活动:在5瓶和9瓶中找到1瓶次品展开。课前直接开门见山,直奔主题,在探索的过程中至始至终贯彻:先独立思考、小组讨论、反思、讲解、再总结。教学重点从教学结果转向了教学过程。数学活动之间都有内在的逻辑联系,在数学活动与数学活动之间则用反思来联结。整个教学过程重在对学生做了什么与想了什么之后进行反思。因此,让我感受深刻的是,每个环节做什么、反思什么、教师讲解什么,一目了然。

2、重视小组讨论

为了避免合作交流走过场或流于形式等倾向,本教学处理如下:

①为了在合作中能碰撞出智慧的火花,合作时每个环节都建立在独立思考的基础上。学生只有有了自己的思考方案,在小组讨论中才不会空谈。

②小组合作交流,每人环节有明确的问题,并让学生能理解他们所面临的问题或任务。

如:5瓶的探索中讨论的重点则是学生要讲清每一种思路的思考过程。在9瓶探索中讨论的重点则是如何用规定的数学符号来表示过程和结果。

③每次合作都有反馈,明确合作的成果,为新的合作奠定新的基础。

3、渗透数学思想方法在5瓶的探索活动中,通过反思让学生发现,把5瓶转化为从2瓶、3瓶中找,要比直接从5瓶中找要来的简单,即把面临的问题转化为简单的问题这就是化繁为简。另外在9瓶的探索中,在学生汇报的多个方案中,学生通过观察发现,在平均分成3份时则是次数最少,旨在通过“找次品”渗透优化思想,感受数学的魅力。

4、有指导的再创造。学生可以创造一些对他们来说是新的,而对指导者是熟知的东西。如;在5瓶探索中,学生在经历操作、语言表述、画图来表示思考的过程和结果后,教师问:如果用数学符号来表示以上的思考过程和结果,你们会吗?学生动手用自己认定的数学符号进行着自由性的创造。在学生展示的方案中,教师进行对比指导,确定出最简洁的用数学符号来表示思考过程和结果的方案。当然每节课上完后都有遗憾,如果时间允许还可以练习6瓶、7瓶、8瓶的探索,这样可能更能说明规律。但教学是一门遗憾的艺术,因为它总是缺失弥补的机会,就让我们及进总结、及时反思、争取下一次的渐趋完美吧、

《《找次品》教学反思15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式